The Cross-Border Biotech Blog

Biotechnology, Health and Business in Canada, the United States and Worldwide

Friday Science Review: November 9, 2012

Histones are essential components of chromosomes, whose function is to both package DNA and to regulate the expression of genes. For the latter function, histones are subject to a range of post-translational modifications that can activate or silence transcription of the local DNA. The modification status of histones is determined by the activities of a range of enzymes that act to add or remove the modifications and the coordination of the different activities is essential to regulate the transcription or silencing of genes.

The recent PNAS paper from the Brand lab at the Ottawa Hospital Research Institute’s regenerative medicine program adds to our knowledge of this epigenetic process by determining the mechanism by which two proteins, H3K9 methyltransferase G9a/KMT1C and the H3K4 demethylase Jarid1a/KDM5A, work together to achieve developmentally regulated gene expression at the β-globin locus. Opening the window on these complex mechanisms will be key to developing new therapies for a wide range of conditions ah, cancer, autoimmune diseases and psychiatry.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


Get every new post delivered to your Inbox.

Join 128 other followers