The Cross-Border Biotech Blog

Biotechnology, Health and Business in Canada, the United States and Worldwide

Friday Science Review: May 25, 2012

Most people take for granted that given a little resolve at the gym they can induce their muscles to grow, however, most people have probably not considered the complexity of the underlying cellular and biochemical processes. In response to exercise or injury, normally quiescent muscle satellite cells are activated and divide to produce progeny myogenic precursor cells that will themselves undergo multiple rounds of division before differentiating and fusing to the multinucleated muscle myofiber, thereby increasing the size and strength of the muscle. Key to the regulation of the satellite cell function is expression of the paired box transcription factors Pax3 and Pax7. These transcription factors are highly related (>85% sequence identity) and play overlapping, but mostly nonredundant roles in the specification and progression of the adult satellite cell lineage. Lineage tracing has suggested that Pax3 is required in cells that contribute to embryonic myoblasts and to the endothelial lineage, but Pax7 cells contribute to fetal myoblasts.

Given their sequence similarity, researchers at the University of Ottawa investigated how the functional differences were achieved. By profiling the global gene expression of satellite cell-derived myoblasts, alongside determining the genome-wind binding sites of Pax3 and Pax7, they showed that Pax3 and Pax7 have intrinsic differences in DNA binding and it is the differential binding that drives the differential downstream gene activation. Specifically, they showed that Pax3 and Pax7 are both able to activate gene expression by binding to combined prd/hbox motifs, but Pax7 can also activate gene expression by binding to the hbox motif alone. Due to this difference in binding ability, over 400 genes are regulated by Pax7, that are not subject to regulation by Pax3 and these genes have diverse functions from cell adhesion to muscle cell differentiation. This work adds to the transcriptional network underpinning muscle cell differentiation and also cautions us by showing how large functional differences can occur in transcription factors with only small differences in sequence.

Other publications:

  • Hyperphosphorylation and cleavage at d421 enhance tau secretion. PLoS One. Université de Montréal
  • Structural basis for substrate specificity and catalysis of human histone acetyltransferase 1. PNAS. Structural Genomics Consortium, Toronto
  • Muramyl Dipeptide Induces NOD2-Dependent Ly6C(high) Monocyte Recruitment to the Lungs and Protects Against Influenza Virus Infection. PLoS One. Laval University

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


Get every new post delivered to your Inbox.

Join 128 other followers