The Cross-Border Biotech Blog

Biotechnology, Health and Business in Canada, the United States and Worldwide

Tag Archives: The Hospital for Sick Children

Friday Science Review: March 11, 2011

Insulin + Pancreatic Stem Cells, Proof of Life

University of Toronto ♦ Published in Cell Stem Cell, Mar. 4, 2011

The origin of insulin-producing pancreatic β-cells has been a matter of contentious debate. Some research groups have produced findings that would suggest β-cells duplicate themselves and that new β-cells do not arise from the differentiation of a more primitive pancreatic progenitor. Other groups have proven the existence of pancreas-derived multipotent progenitors (PMPs) that are capable of giving rise to a spectrum of cells from both the pancreatic and neural lineage. So where do β-cells come from?

New results from the lab of Dr. Derek van der Kooy point in the direction of PMPs. Lineage labeling experiments in mice showed that PMPs originate from the embryonic pancreas, as opposed to the neural crest, which has often been cited as the source of pancreatic progenitors. These findings are in conflict with previous studies which could not provide evidence of pancreatic progenitors in the developing embryo or the adult. Convincingly, Dr. van der Kooy’s group was able to show that PMPs express insulin in vivo, an attribute that has often been considered prerequisite for the production of β-cells.

Analysis of human islet tissue showed that PMPs also exist in humans, and, similar to the mouse PMPs under observation, were capable of differentiation to both the pancreatic and neural lineages. Both mouse and human PMPs were able to alleviate diabetic conditions in mice and may provide another avenue to explore in the pursuit of therapeutic cells for transplantation therapy.

Selective Pressures Shape the Genomic Integrity of Human iPS Cells During Reprogramming

Samuel Lunenfeld Research Institute ♦ Ontario Institute for Cancer Research ♦ The Hospital for Sick Children ♦ University of Toronto

Published in Nature, Mar. 3, 2011

Coercing fibroblasts to revert to an embryonic stem cell-like state places a good deal of stress on the genome. The consequences of reprogramming can affect the development of safe populations of cells for therapeutics, which is why researchers at the Samuel Lunenfeld Research Institute have been interested in understanding how the reprogramming process affects genomic integrity. The integrity of a genome can be measured using copy number variation (CNV) within a population of cells. CNVs arise from deletions or duplications in DNA; as variation increases, the integrity of the genome declines.

In this study supervised by Dr. Andras Nagy and Dr. Timo Otonkoski, researchers characterized the CNV content of 22 human iPS cell lines and 17 human ES cell lines using Affymetrix SNP arrays. Induced pluripotent cell lines were created by way of retroviral transduction or with the use of a transposon known as piggybac. The number of CNVs in iPS cells was roughly twice that found in ES cells on average and many CNVs found in iPS cells were undetectable in ES cells suggesting that CNVs are generated during the reprogramming process. To the surprise of the group the number of CNVs in iPS cells was greatest at early stages, and decreased as cells were passaged in culture.

Researchers hypothesized that the reduction in copy number variation could be the result of two things, firstly, a DNA repair mechanism that corrects deletions and additions as the cells grow and divide in vitro, or mosaicism in early cultures followed by selection of iPS cells that have lower variation and greater genomic stability; a survival of the fittest in a way. It is unlikely that a DNA repair mechanism could operate fast enough to account for the rapid reduction of CNVs observed in iPS cells in culture and indeed, after using fluorescence in situ hybridization (FISH), it was confirmed by the lab group that mosaicism did exist in early cultures of iPS cells. In order to prove that selection was driving the decrease in CNVs researchers focused on deletions that cannot be corrected by DNA repair mechanisms. They found that several of these deletions were selected against during passaging of iPS cell lines. This pressure was bidirectional however, as some CNVs were selected for, not against.

CIITA, A Promiscuous Partner in Lymphoid Cancers

Centre for Translational and Applied Genomics ♦ BC Cancer Agency ♦ University of British Columbia

Published in Nature, Mar. 2, 2011

Chromosomal translocation events are a common abnormality leading to the development of cancer but few have been described as contributors to the development of lymphoid cancers. A new chromosomal translocation event has been implicated in the development of Hodgkin lymphoma and primary mediastinal B-cell lymphoma (PMBCL). Large scale mutations of this nature occur when non-homologous chromosomes transiently stick together and cause breakages that lead to the exchange of genetic information. If genes are placed next to one another following the translocation event, fusion transcripts are created which can lead to cellular abnormalities and malignant expansion.

Genome-wide mapping of translocation events can be carried out using paired-end sequencing of expressed transcripts. Researchers used such a platform to analyze two Hodgkin lymphoma cell lines. Analysis uncovered a highly expressed gene fusion between the MHC class II complex (CIITA) and an uncharacterized gene. Further analysis of 263 B-cell lymphoma cell lines went on to show that the CIITA translocation was highly recurrent in PMBCL (38%) and Hodgkin lymphoma (15%). The genetic event appears to be quite specific to PMBCL as it was observed in only 3% of diffuse large B-cell lymphoma cell lines.

Researchers note that although certain translocation events of very specific rearrangements are key contributors to some B-cell lymphomas, resulting in unique clinopathological features, many well characterized B-cell lymphomas still lack identifiable translocations that define the disease. Translocations in B-cell lymphomas are a rare occurrence, and until the publication of this research, no translocations had ever been reported in PMBCL.

Friday Science Review: October 22, 2010

Some great research to touch on this week in top-notch journals including Science, Cell, and NEJM. The first publication really emphasizes the strength of collaborative research projects around the globe.

Understanding Endometriosis: Ovarian clear-cell carcinomas are less common than high-grade serous carcinomas (12% and 70% of total respectively), but still remain the second leading cause of death from ovarian cancer. It is important that the mechanisms behind the formation of this rare subtype are elucidated because it is not responsive to conventional platinum-taxane chemotherapeutic regimes that are currently the first-line treatment for ovarian cancer. In a comprehensive study published in The New England Journal of Medicine, researchers sequence the entire transcriptomes of 18 ovarian clear-cell carcinomas  and identify frequent somatic mutations in the tumor suppressor gene ARID1A (the AT-rich interactive domain 1A). ARID1A encodes the protein BAF250a which in turn is part of the chromatin remodeling complex SWI-SNF that regulates a diversity of cellular processes including DNA repair and tumor suppression. Interestingly, the mutation appears specific to the clear-cell and endometrioid subtypes. After identifying the ARID1A mutation, researchers carried out targeted re-sequencing in a mutation-validation cohort consisting of an additional 210 carcinoma samples from all subtypes. Combining the discovery cohort and validation cohort, the ARID1A mutation was found in 55 of 119 clear cell carcinomas (46%), 10 of 33 endometrioid  carcinomas (30%), but not one of 76 high-grade serous ovarian carcinomas. These findings strongly implicate ARID1A mutation in the early transformation of endometriosis into cancer and the genesis of clear-cell and endometrioid ovarian carcinomas. This exhaustive work was carried out by some 45 researchers in a dozen or so institutions found in Canada, the United States, and Australia.

Danger Signaling: Physical injury to tissue leads to cell necrosis and the release of special patterning molecules, including proteins, nucleic acids, extra-cellular matrix proteins, and various lipids as a complex milieu of chemotaxic signals. Neutrophils are able to use these unique signals to guide themselves to the site of a wound, and play an important role in recycling debris from dying cells. In a study published in Science, led by Dr. Paul Kubes of the Immunology Research Group at the University of Calgary, researchers used a mouse model of sterile injury and an in vivo imaging technique known as spinning disk confocal microscopy to observe the kinetics of eGFP-expressing neutrophils in response to thermal induced necrotic injury. Experiments revealed that necrotic cells activated a multistep hierarchy of cues that lured neutrophils to the site of danger. Another interesting finding of the study is that neutrophils appear to travel to the site of injury intravascularly as opposed to taking the most direct route through tissue. The group proposes that danger sensing and recruitment mechanisms may have evolved to prioritize intravascular travel in order to reduce the collateral damage incurred if neutrophils were to migrate directly through healthy tissue.

In Pursuit of Perfection: The fundamental limit of minimally invasive surgery is at the level of the single cell. In principal, lasers are capable of operating at this spatial resolution however efforts to achieve this have been limited by thermal and shock wave induced collateral damage to surrounding tissue. The long-held promise of a fine surgical laser has been delivered by two investigators in the Toronto research community with the creation of a novel laser source – the Picosecond IR Laser (PIRL). As a cutting modality the PIRL has a shorter pulse duration than conventional surgical lasers, vaporizing tissue on the picosecond timescale rather than burning on the nanosecond, and exploits a new cutting mechanism that selectively energizes water molecules. Researchers created full thickness wounds in CD1 mice using PIRL to demonstrate that it caused neither cavitation or any associated shock wave induced damage, and also showed that PIRL greatly reduced scar formation by comparison to conventional surgical laser or scalpel. The technology is expected to be useful in surgical procedures where scarring is particularly debilitating. Dr. Benjamin Alman, Head of the Division of Orthopedic Surgery at Sick Kids, and Dr. Dwayne Miller, in the Department of Chemistry at the University of Toronto, were co-principal investigators in this study published in PloS ONE.

At the Junction: The RAS/MAPK signaling pathway contributes to a number of important cellular processes including proliferation, differentiation, and survival. In its most basic form the pathway is regulated by the small GTPase RAS, and the three core kinases RAF, MEK, and ERK/MAPK. Like most signaling pathways, the RAS/MAPK pathway is controlled by a diversity of post-translational modifications but much less is known about regulation of its core protein components at the mRNA stage. Using a genome-wide RNAi screen in Drosophila S2 cells, researchers set out to identify other proteins involved in the pathway that could modulate MAPK protein levels. In doing so they identified the Exon Junction Complex (EJC) as a regulator of mapk transcripts. The complex is believed to contribute to the regulation of exon definition and suggests that the EJC has a key role in early regulation the RAS/MAPK pathway. This study, published in Cell, was led by Dr. Marc Therrien at the University of Montreal.


Get every new post delivered to your Inbox.

Join 126 other followers