The Cross-Border Biotech Blog

Biotechnology, Health and Business in Canada, the United States and Worldwide

Tag Archives: Metabolomics

Friday Science Review: March 4, 2011

The Origin of Meier-Gorlin Syndrome

Dalhousie University ♦ University of Montreal ♦ University of British Columbia

Published in Nature Genetics, Feb. 27, 2011

Researchers have mapped a locus for Meier-Gorlin syndrome (MGS), a rare genetic condition characterized by short stature, small ears, and reduced or absent kneecaps. A mutation in the ORC4 gene seems to be at the root of the disorder. ORC4 is a component of the eukaryotic origin recognition complex.

To map the locus responsible for MGS researchers performed high density genome-wide SNP genotyping using a panel of 600,000 markers provided by Illumina. The next stop involved PLINK, a whole genome analysis toolset, which was able to identify a haplotype on chromosome 2 within a number of affected individuals. Sequencing of coding exons located in the ORC4 gene led to the identification of a missense mutation that causes a tyrosine (residue 174) to cysteine switch in the ORC4 protein. The tyrosine residue affected in MGS is completely conserved across eukaryotes suggesting it has an important function; the amino acid is also believed to interact with a conserved arginine residue on a nearby helix motif in the protein structure. In the absence of this interaction the structural integrity of the protein could be compromised in part.

The origin recognition complex consists of six proteins in humans and is essential for DNA replication. It plays a critical role in recognizing origin sites on DNA and in the formation of DNA replication forks. This is the first report of an inherited mutation in any gene of the origin recognition complex in the vertebrate literature.

The Human Serum Metabolome

University of Alberta ♦ National Institute of Nanotechnology

Published in PLoS ONE, Feb. 16, 2011

Human biofluids are very important from a clinical standpoint given the insight they can provide into the disease conditions of a human being. The study of metabolomics attempts to identify, on a large scale, the composition of metabolites found in these biofluids. The advent of advanced analytical techniques along with mounting pressures for scientists in the metabolomics community to document the entire human metabolome, led to the development of the Human Metabolome Project. The project is supported by Genome Alberta and Genome Canada, the latter of which is a private, non-profit, corporation that received $600 million in funding from the Canadian government to develop and implement a national strategy in genomics and proteomics.

The most recent contribution to the project is a comprehensive multicentre study led by Dr. David Wishart at the University of Alberta. Using a diversity of metabolomics platforms researchers were able to identify, and quantify, metabolites found in human serum. The use of different methods, including nuclear magnetic resonance (NMR), and various mass-spectrometry platforms (GC-MS, LC-MS), increased the overall coverage of the serum metabolome. Data gathered via these platforms was linked to computer-aided literature mining which allowed for the development of a virtually complete set of metabolites. In total the group found 4,229 metabolites, but this number may increase in coming years as more powerful characterization techniques are developed.

Dr. Wishart and his colleagues previously characterized the human cerebrospinal fluid metabolome.


Follow

Get every new post delivered to your Inbox.

Join 126 other followers