The Cross-Border Biotech Blog

Biotechnology, Health and Business in Canada, the United States and Worldwide

Tag Archives: glioblastoma

Friday Science Review: May 14, 2010

A Cure for Brain Cancer: An aggressive type of brain cancer called glioblastoma may be cured using the small molecule dichloracetate (DCA), a cheap and safe generic compound.  The drug works by altering the metabolism of the cancer cells, which is an emerging concept that exploits the different (higher) energy demand of cancer cells.  DCA’s target in the cells is the metabolic enzyme pyruvate dehydrogenase kinase II and it also promotes cell death in glioblastoma cancer cells and cancer stem cells.  In an 18-month study, some of the five patients’ tumours either regressed in size or did not grow any more.  Drs. Kenn Petruk and Evangelos Michelakis at the University of Alberta describe their study showing efficacy of DCA in humans for the first time in the journal Science Translational Medicine.  It is interesting to note that these and future studies are funded by government grants and private donations since the pharmaceutical industry is not interested in a compound that is readily available and without intellectual property protection (ie. no $cha-ching$).

Embryonic Cells Can Stop Viruses: Embryonic cells have a natural defence mechanism to limit the ability of viruses to express their genes and thereby prevent infection and further spread of the virus.  Researchers also determined that the different layers of cells in the developing embryo have different capacities to silence viral activation.  This “graphical abstract” published in Cell Stem Cell shows the outer layer of extraembryonic endoderm stem cells as the first line of defence with the strongest abilities to extinguish viral gene expression.  Several proteins including chromatin remodelling and repressor complex proteins were also identified to play key roles in this process.  The study was lead by Dr. Mellissa Mann at the University of Western Ontario.

If Only Mice Could Talk: This one is a bit strange.  It looks like mice express pain through facial expressions similar to the way humans do.  McGill University researchers developed the Mouse Grimace Scale to aid scientists working with lab animals to better ‘communicate’ with the animals.  Not only will this help to minimize and manage the stress that is inflicted on the animals but they can read the facial responses to determine whether a drug treatment is working or as an indicator of negative side effects.  Check out the study by Dr. Jeffrey Mogil in the issue of Nature Methods.

Pathogens Are Our Friends: Diphtheria Toxin (DT) is a potent cytotoxin that kills the cells that it binds to.  The DT385 is a recombinant version that is truncated and can be targeted to cancer cells to be used as a therapeutic agent.  In the present study, 15 of the18 human cancer lines tested were inhibited by DT385 as a result of increased apoptosis and decreased protein synthesis.  Dr. David Waisman at Dalhousie University published his study online in PLoS One.  Using pathogen proteins as therapeutic agents is not a new concept.  Oncolytics Biotech’s REOLYSIN® is derived from the Reovirus and Advaxis, Inc. exploits the Listeria bacterium to activate the immune system in an immunotherapy approach.

Studying Herpes Infection: Dr. Karen Mossman (McMaster University) investigated Herpes Simplex Virus-1 infection and how a viral protein, ICP0, is localized properly in the cell to block Interferon Regulatory Factor 3 (IRF3), the cell’s innate antiviral mechanism.  The study is described in PLoS One journal.

Trends Update — Personalized Medicine: Clinical Data on Personalized Cancer Treatment

A study presented at the American Association for Cancer Research meeting this week showed benefits to patients from using molecular profiling to customize chemotherapy regimens.

The pilot study, with Daniel Von Hoff, M.D. as the senior investigator, used immunohistochemistry and microarray profiling to select treatment regimens for 66 patients who had ovarian, colorectal, breast and other cancers.   The data compared progression-free survival and tumor size after the patients moved to a new treatment regimen with the same patients’ progression before molecular profiling.  Forty percent of patients in the trial survived at least 15 months compared to 20 percent of the control population.

A story in Forbes notes personalized cancer treatment data in a colon cancer study and two glioblastoma studies that were also presented at the AACR meeting.
 

Bookmark and Share

Follow

Get every new post delivered to your Inbox.

Join 126 other followers