The Cross-Border Biotech Blog

Biotechnology, Health and Business in Canada, the United States and Worldwide

Friday Science Review: September 21, 2012

Left-sided congenital heart disease (LS-CHD) is one of the most commonly seen forms of cardiac malformations. Affected individuals suffer from a spectrum of cardiac issues that include bicuspid aortic valves, aortic valve stenosis, narrowing of the aorta  and underdevelopment of the left side of the heart (hypoplastic left heart syndrome). Several lines of evidence indicate that LS-CHD is due to genetic factors, but the specific genetic causes are not currently known. An international collaboration, headed by the Andelfinger lab at the Université de Montréal, set out to explore the role of structural genomic variations by searching for copy number variants present in only affected individuals and not other family members.

Their study, reported in PLOS Genetics, revealed 25 new candidate genes for LS-CHD. The genes had diverse functions and included the SMC1A gene, involved in sister chromatid cohesion, MFAP4, believed to be involved in in cell adhesion or intercellular interactions, and CTHRC1, which is involved in vascular remodelling. Together it builds a picture that suggests broad alterations in angiogenesis may be the root cause of at least some of the incidences of LS-CHD. This work is part of the first steps in determining the detailed molecular pathophysiological mechanism of LS-CHD, an important part of understanding the diversity of patient outcomes and of developing therapies.

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 129 other followers