The Cross-Border Biotech Blog

Biotechnology, Health and Business in Canada, the United States and Worldwide

Friday Science Review: August 24, 2012

Reduced blood flow to organs and peripheral tissue, as might be expected, leads to cell necrosis and death. The nature of the resulting ischemic disease depends upon the specific tissue affected and spans the range from acute conditions such as acute coronary syndrome or acute kidney injury, to chronic conditions such as peripheral artery disease and angina. Despite the development of both pharmacological and surgical treatment strategies, ischemic disease remains a leading cause of morbidity and mortality. As such, therapies that will reduce ischemia by promoting the regeneration of damaged vasculature are an active area of active research and cell-based therapies represent one avenue being pursued.

In a paper in Stem Cells, researchers at the University of Western Ontario show that by selecting for a rare population of aldehyde dehydrogenase expressing cells from human umbilical cord blood they could promote vascular regeneration in an animal model of ischemic disease. This rare population of cells (<0.5%) is enriched for early myeloid and stem cell-associated cells and displays a pro-angiogenic transcription profile, including the hallmark angiogenic signaling factors ANGPT1 and VEGFA. In vitro cell culture efficacy was demonstrated in experiments that showed that this cell population was able to promote human umbilical vein endothelial cell (HUVEC) survival and tube-like cord formation, both being indicators of pro-angiogenic activity. Interestingly, permanent engraftment of the cells was not required for the vascular regeneration, which increases the clinical development potential by potentially avoiding the need for long-term immune suppression of a patient receiving this allogeneic cell therapy approach.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 125 other followers