The Cross-Border Biotech Blog

Biotechnology, Health and Business in Canada, the United States and Worldwide

Friday Science Review: August 3, 2012

Antibiotic resistance is an increasingly pressing public health problem. While the prevalence of resistance is increasing, there is a simultaneous dearth of newly approved or in development drugs. For those that are in development the majority are natural products or derivatives thereof. Most of these represent improved variants of marketed compounds rather than a new mechanistic class, which increases the risk of the rapid appearance of resistance. The small pipeline and current lack of diversity therefore means the identification of novel antibiotics is an important task.

Cationic antimicrobial peptides (CAMPs) represent one such class and are produced by all living species. These peptides have varied structures, but share the feature of a segregation of cationic and hydrophobic resides and it is this gross physiochemical property that underlies the antibiotic effects. Multiple mechanisms can be involved in the bactericidal activity, including membrane disruption, binding of DNA and other cellular components. However, the ability to translate the promise of CAMPs into antibiotics is hampered by their pharmacokinetic properties and especially their susceptibility to degradation by serum proteases.

Various strategies are available to address the stability problems of potential peptide therapeutics and this week’s paper by the Schweizer lab at the University of Manitoba focuses on examining the potential of the incorporation of peptoid residues into CAMP’s to improve their stability. Encouragingly their peptoid analogues had similar activities to the parent peptides, again supporting the idea that CAMPs work through gross physical chemical properties rather than specific structural features. The next step for the researchers is to show that the retained activity is bolstered by improved serum stability.

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 130 other followers