The Cross-Border Biotech Blog

Biotechnology, Health and Business in Canada, the United States and Worldwide

Friday Science Review: May 11, 2012

The tumour suppressor p15ink4b is a cyclin-dependent kinase (cdk) inhibitor, which functions to cause cell cycle arrest and whose functional presence in tumour cells is often lost through mutation or deletion. The expression of p15ink4b can be rapidly induced by transforming growth factor beta (TGF-β)  and regulation of p15ink4b levels occurs primarily at the level of transcription. DNA methylation is one of the mechanisms known to repress transcription of p15ink4b, however, the mechanism by which DNA methylation is reversed for the regulation of transcription is relatively poorly understood. In this week’s Molecular Cell paper, the Torchia lab at the University of Western Ontario sought to determine the mechanism of DNA methylation and demethylation of the p15ink4b in response to TGF-β.

Using chromatin immunoprecipitation-sequencing (ChIP-seq), they showed that the p15ink4b gene is a target for the ZNF217/CoREST complex and that along with the action of specific DNA (cytosine-5)-methyltransferase enzymes e.g. DNMT3A, the p15ink4b gene is hypermethylated and repressed. Overcoming the repression in response to TGF-β induced signaling was shown to require removal of the DNMT3A/ZNF217/CoREST complex and replacement by SMAD2/3, the CBP acetyltransferase, and TDG or MBD4. Base excision repair then occurred, demethylating the DNA and thereby removing the transcriptional repression. They further showed that ZNF217 overexpression, a feature of some cancers, was shown to inhibit recruitment of the demethylation complex.

While focused on the specific regulation of p15ink4b, these results add more generally to our knowledge of methylation-based epigenetic regulation and the important association of abnormal DNA methylation patterns with malignant transformation.

Other publications:

  • Monomeric site-specific nucleases for genome editing. PNAS. University of Western Ontario
  • TRADD contributes to tumour suppression by regulating ULF-dependent p19(Arf) ubiquitylation. Nature Cell Biology. University of Toronto
About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 129 other followers